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Abstract
When discussing the resistance of an atomic-or nanometre-size contact we
should consider both its ballistic and its diffusive contributions. But there is
a contribution of the leads to the resistance of the contact as well. In this
context, the geometry and the roughness of the surfaces limiting the system
will contribute to the resistance, and these contributions should be added to the
ideal ballistic resistance of the nanocontact. We have calculated, for metallic
materials, the serial resistance of the leads arising from the roughness, and
our calculations show that the ohmic resistance is as important as the ballistic
resistance of the constriction. The classical resistance is a lower limit to the
quantum resistance of the leads. Many examples of earlier experiments show
that the mean free path of the transport electrons is of the order of the size of the
contacts or the leads. This is not compatible with the idea of ballistic transport.
This result may put in serious difficulties the current, existing interpretation of
experimental data in metals where only small serial resistances compared with
the ballistic component of the total resistance have been taken into account.
The two-dimensional electron gas (2DEG) is also discussed and the serial
corrections appear to be smaller than for metals. Experiments with these last
systems are proposed that may reveal new interesting aspects in the physics of
ballistic and diffusive transport.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When talking about electron transport, the condition needed for having ballistic transport
through an object of size D is that the mean free path of the electrons l � D. Then the
electron does not suffer collisions and goes throughout the object ballistically. In contrast, if
l � D, then conduction is controlled by the ohmic resistance. Figure 1 illustrates the problem.
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Figure 1. The geometry scheme for the relation between mean free path l and the size of the object
D. When it comes to the nanoconstrictions, the size of the constriction becomes smaller than the
mean free path.

But we notice already a difficulty in defining our problem, i.e. that the boundaries of the bulk
material play no role because the surface area is negligible. However, when dealing with nano-
objects, in our case with nanoconstrictions, we immediately have to put ourselves the question:
what is now the effective mean free path of the electrons? Is it the same as for the bulk? Or,
more importantly, what is the influence of the surface roughness, not only in the constriction
region but also in the leads connecting the constriction?

Experimental data on conduction of narrow metallic constrictions and nanocontacts have
been interpreted as evidence for conductance quantization of the electrical current as a
consequence of ballistic transport. It was calculated that the conductance σ is quantized by
intervals of integral fraction units of σ−1 = R0 = h/2e2 ≈ 12 900 �. The data were
interpreted [1–3] using Landauer’s formula [4] and the geometry in the left-hand side of
figure 3(B) for δ > λ with the restrictive condition of θ = π/2, where λ is the Fermi
wavelength of the electrons. But no roughness, either in the leads or at the contact, was
taken into account. Experiments [5–10] apparently showed that the corresponding conductance
or resistance plateaus at the predicted ‘quantized’ values were in agreement with the theory.
Histograms of conductance on a ‘large’ number of samples showed peaks around the integral
numbers of conductance. Figure 2 presents results of two such experiments, as reported
in [6–8]. However, an important point is that, in most experiments, the geometry of the metallic
shape leading to ‘quantization’ remained unknown. As one of few exceptions, the experiments
with Au of Ohnishi et al [9] showed the values of conductance at integer numbers and, at the
same time, the geometry of the constriction observed by TEM (see figure 3). In figure 3(a), one
can see how the contact is reduced and broken. Also, in figure 3(a), a more detailed picture
is given with the value of the conductance measured at the same time. However, one should
notice that the angle leading to the constriction (see figures 1 and 3) was not θ ≈ π/2 but
θ ≈ π/4, a quite important difference, as will be revealed. In addition, as can be seen in
figure 3, the Au surface was quite rough. The general view, up to now, of the problem of
transport in atomic-size metallic contacts at room temperature (RT) and low temperature (LT)
is mainly determined by the ballistic conductance through the narrowest part of the contact.
The rest of the contributions, including the contributions of the leads, are considered as small
corrections [10].

2. Theory and comparison with experiments

In this paper we would like to discuss the different contributions to the resistance of metallic
nanocontacts and especially the contribution of the leads. This will help us to understand
whether the previous interpretation is affected by small corrections or not. The resistance of
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(A)

(B)

Figure 2. (A) Experimental histograms obtained from thousands of contact breakings, showing
clear evidence of a preference for conductance values close to integer multiples of G . After [6]
and [8]. (B) (a) Conductance histogram obtained from the average conductance G/G0 versus
displacement d/λF. The stepped line indicates the number of channels contributing to each
conductance value. (b) Conductance histogram for Na obtained from hundreds of simulations
of contact-breaking processes. (c) Experimental conductance histogram for Na. After [11], [39]
and [7].

3



J. Phys.: Condens. Matter 19 (2007) 016212 N Garcı́a et al

(A)

(B)

θ

Figure 3. (A) Direct observation of the neck-breaking process of gold contacts in a STM–TEM
setup. After [9]. (B) TEM images of gold contacts showing a half opening angle of approximately
π/4 and the measured ‘quantized’ resistance for different stages of the contact. After [9]. The left
is the corresponding geometry used for calculations. Profile of cone-like nanocontact geometry,
where a and δ is the narrowest width and the length of contact, θ is the half open angle and r is the
radius of the cone.
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the ‘neck’ has been discussed [11–16]. It was shown that the corrections due to the roughness of
the neck or from point imperfections at the neck could give appreciable corrections. However,
there have been few discussions of the contributions of the leads to the resistance and, certainly,
roughness has not been considered. The only considerations taken into account for these
contributions were made using Wexler’s work [17] to interpolate between the Sharvin–Knudsen
ballistic [1] and Maxwell classical conductance for an orifice of diameter a in an isolating
screen separating two conducting half spaces; i.e. a geometry with θ ≈ π/2 and δ � λ. The
formula reads:

R = Rs + γ (κ)ρ/a = Rs

(
1 + 3π

8
γ (κ)a/ l

)
(1)

where l is the mean free path of the conducting electrons, κ = a/ l, and γ (κ) is a factor of
the order of unity, which is 1 when κ tends to infinity and 0.67 when κ tends to zero. The
Sharvin–Knudsen resistance is given by,

Rs = 4ρl/3A =
(

2e2

h

k2
F A

4π

)−1

(2)

where A = πa2 is the area of the orifice, kF is the Fermi wavevector of the electrons
respectively, h and e are the Planck constant and the electron charge. This resistance dominates
in the limit of κ � 1. To the opposite limit, when κ � 1, one has the Maxwell result ρ/a.
Then the Sharvin resistance is identified as the quantum resistance. Quantum resistance jumps
show up at the Sharvin background, as seems to be revealed in the experiments. It is from this
formula that one concludes that, at a � l, the main contribution to the contact resistance is
the ballistic resistance, because the corrections are of the order a/ l. We remark that Wexler’s
argument is a classical one without consideration of roughness. In this case, with the given
geometry (θ ≈ π/2 and δ � λ), we have no objections that the estimations of the corrections
are valid.

However, it is clear to us that the use of Wexler’s formula is irrelevant for the real case of
atomic-size metallic contacts. Wexler’s formula corresponds to θ = π/2 geometry for specular
scattering in the walls and no roughness at the surface. This implies that the mean free path of
the bulk material is the same as that at the vicinity of the orifice.

It is difficult to estimate the role of the roughness for θ = π/2. However, for smaller
angles of θ this effect should be very large, because the resistivities as well as the effective
mean free path change due to surface scattering by the walls of the leads which contact the
orifice.

In 1901, Thomson [18] first suggested that the source of the high resistivity, ρ, of very
thin films of metals lies in the limitation of the mean free path of the electrons due to non-
specular scattering at the surface of the films. With the advent of low temperature and thin-film
growth techniques, Lovell [19] and Andrew [20] realized experiments proving the suggestion of
Thomson. These experiments were performed in Sn films and Na wires. The theoretical work
was done by Fuchs [21], Sondheimer [22] and Chambers [23] on thin films using the Boltzmann
equation and taking into account the specularity in the p parameter for the surface scattering to
explain the data. This is a qualitative parameter that, for p = 1, we obtain the limit of specular
scattering (surfaces do not contribute to the resistance); and for p = 0 we have pure diffusive
non-specular scattering, in which case we have a large contribution to the resistance due to the
surface limiting of the system at hand. Dingle [24] and MacDonald and Sarginson [25] did the
same work for circular and square section wires, respectively. These results are also described
in a book on metals edited by Ziman [26]. These earlier experiments were done in wires
having diameters of microns, but to discuss the ballisticity in metals one does not need to go to
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Figure 4. (Left) Resistivity of tin foils at 3.8 K against foil thickness. The full line is the theoretical
curve for diffuse scattering. (Right) Resistivity of mercury wire at 3.5 and 2.5 K against wire
diameter. The full line is the theoretical curve for diffuse scattering. After [20].

nanometre size, which is necessary for RT experiments. However at LT (liquid helium or so)
the electron mean free path for a bulk metal of good purity may be of the order of centimetres.
Therefore, a section of wires of microns may become smaller than the mean free path, and,
in theory, we have ballistic transport. However, this does not happen because, as we decrease
the wire section, the resistivity of the wire increases, reducing the effective mean free path, as
illustrated in the earlier experiments (figure 4) [20]. Therefore the ballistic limit is not reached
because the ohmic resistance keeps increasing. The same conclusions can be reached from the
most recent and active field of thin films, where technology has been greatly improved [27–32].

From earlier and recent work, theory and experiments are in agreement [18–34]. We can
resume the behaviour of the resistivities for different geometries (films, circular and square
wires). These are as follows for the ratio κ = a/ l, where a is the smallest transverse size of
the object at hand (for example, the thickness for films or the diameter for wires) and l is the
mean free path in the bulk [22]: For thin films:

ρ

ρ0
= 4

3

1 − p

1 + p

1

κ log(1/κ)
κ � 1. (3a)

For circular wires:
ρ

ρ0
= 1 − p

1 + p

1

κ
κ � 1. (3b)

For square wires:
ρ

ρ0
= 1 − p

1 + p

0.897

κ
κ � 1. (3c)

From the above classical limits, for κ = a/ l � 1, ρ varies approximately as ρ0/κ(where ρ0

is the bulk resistivity due to collisions). This means that the effective mean free path for
the object le is controlled by the transverse size a. Therefore it seems that the mean free
path of the material, l, plays a smaller role than when it is smaller than a. In figure 5(a) we
present a collection of experimental data justifying the above conclusion. Then in a nanosystem
or nanoconstriction (a ≈ 1 nm), the mean free path for collisions in metals is around 20–
40 nm, but this plays no role in the resistance. Instead, the role is played by scattering at the
rough surface characterized by le which is much smaller. However, this result presents serious
difficulties in reaching the statement that a � le is the criterion for ballistic conductance.
As has been seen, it does not help to reduce the constriction width if, at the same time, the
roughness is not reduced, since metals have a natural roughness that cannot be reduced below
a limit.
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Figure 5. A summary of measured resistivities of thin films versus thickness of several metals
retrieved from the corresponding references ( Pt [27], Au (T ≈ 0 K) [28], Au
(T = 250 K) [28], Bi [29], Cu [30], Au [31], Ni–Fe Permalloy [32],

Al [33], CoSi2 [34]). The resistivities are normalized by the metal bulk resistivity ρ0,
and the thickness is scaled by free mean path l accordingly. The experimental data are fitted using
the Fuchs–Sondheimer theory for the best values of p as well as the Mayadas and Shatzkes theory.
The dashed line is for ρ by the M–S theory with p = 0.7 and RMS = 0.3. The dotted line and the
solid line is for ρ by the F–S theory with p = 0.7 and 0, respectively.

In addition to the surface scattering, Mayadas and Shatzkes [33] noticed that, in addition
to surface scattering, grain boundary scattering in polycrystalline films will also increase the
resistivity. The resistivity increases as films become thinner, because the grain boundaries
reduce their size. In figure 5, we sum up the data on thin film resistivities for several metals
together with data fitting lines using the Fuchs–Sondheimer theory for the best values of both
p and the parameter RMS of the theory for grain boundary scattering [33].

The theory has been formed using the classical Boltzmann’s equation. However we may
put to ourselves the question of what would happen if we performed quantum calculations.
First we stress that we are not discussing the ballistic part of the resistance but the contribution
of the diffusive scattering due to roughness in the leads. Second, the classical calculation
results give a lower limit of resistance when compared with quantum calculations. Already, for
thin Au films [34], it was shown that the resistivity by the quantum approach increases more
dramatically than predicted by classical theory when the thickness is reduced. A crossover
is found for ρ behaving from a−1 to a−2 [34] as the film thickness is reduced. This is
important because quantum calculations are complicated and the classical approach permits
us to set lower bounds on the effect. The result can also be discussed from ideas generated
in the localization of electrons in disordered media. Classical arguments do not lead to
localization; however, by using quantum mechanics, localization appears as disorder increases
in the conductor. This implies less and less ballistic behaviour and, at the end, one has to obtain
localization by reducing a; that is to say, quantum calculations will yield values of resistance
higher than those calculated from classical mechanics.

To estimate the contribution of the roughness in the leads, we will start to discuss the
problem with the cone-like model [35] of figure 3(b). Quantum calculations performed for
this model did not take into account the roughness either in the neck or in the leads; i.e. only
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Table 1. Classic calculations for ohmic resistances of the leads, taken to one-atom contact for
different materials.

θ = π/4 θ = π/6
R (ohms) p = 0.3 p = 0.5 p = 0.7 R (ohms) p = 0.7

Au 9 240 5 500 3 190 Au 4 070
Na 19 950 11 875 6 887 Na 8 787
Sn 46 200 27 500 15 950 Sn 20 350

specular scattering in the cone walls was considered. This is not very realistic for metal because,
from our previous analysis, metal surfaces have significant roughness, as is confirmed by theory
and experiments. Also, the scattering is non-specular, with p different to unity, in the model
of Fuchs–Sondheimer for Au, Na, Pb, Pt or for any metal. Therefore a study of the value of
the Rohm due to the rough walls of the cone leading to the contact constriction is in order. We
already advance that the ohmic resistance for the observed values of θ ≈ π/4 [9] is of the same
order as for Sharvin’s resistance.

To perform the calculation, we use the resistivity for a circular wire ρ(r, p) as in the theory
of Dingle (see [24] and [22] formulae 28–31). Figure 6(A) shows the resulting resistivities for
different p values as a function of the wire radius. Notice that ρ(r, p) grows with r−1 for
small values of r . The resistance of the cone with angle θ is obtained as a superposition of
cylinders of radii r and the same length given the non-locality of ρ(r, p). This can reasonably
be approximated as:

Rohm = 2
∫ rM

0

ρ(r, p)

(πa2/4 + α(θ)r 2)
dr (4)

where α(θ) is the solid angle.
We proceed now by applying the previous estimations to the experiments by Ohnishi et al

[9]. These represent a set of experiments where the geometry was observed at the same time
that the conductance was being measured (see figure 3(B)). We notice that the experimental
angle was θ ≈ π/4. These results underestimate the ohmic resistance as observed from fitting
data for films in figure 5, but are nevertheless large. The Rohm values obtained for a one-atom
orifice a ≈ 0.3 nm are, by substituting the values of ρ0 as 2.2 μ� cm, 4.75 μ� cm and
11 μ� cm for Au, Na and Sn respectively [36], of the order of 10 000 � and more. In table 1
we present the values for different p values. If we compare these values with those observed
in experiments of quantized resistance [5–10], one will notice that they are of the same order.
In addition, we would like to mention that the above result showed that the effective mean free
path at the constriction is of the order of a, and Rohm behaves as a−2. Therefore the Sharvin
and ohmic resistances are both of the same order and have an a−2 dependence (slope of the
lines in figure 6); i.e. both resistances are indistinguishable in the classical approximation. So
there is no way to distinguish in the experiments which part of the resistance is contributed by
the leads and which is contributed by the constriction.

The estimations presented here call for some precautions about the interpretation of the
experimental data [5–10] as resistance is contributed only by the constriction and with a ballistic
character. We see that the leads may contribute as much as the constriction, and this cannot be
ignored in metallic nanocontacts. Therefore, reconsideration of the interpretation of the data on
small nanocontacts seems necessary. A pertinent question may be what the conditions should
be for the contribution of the leads to be negligible compared with the ballistic part from the
neck? We concluded that, in order to have a negligible value of Rohm, one needs:

(i) that the surfaces of the walls of the leads are specular, which is difficult to achieve because
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Figure 6. (A) The resistivities for different p values as a function of the wire radius, based on
the analysis from the theory of Dingle [24]; see also [6]. The solid line, dashed line, dotted line
and dash-dotted line represent p = 0, 0.3, 0.5 and 0.7, respectively. (B) The resistance of the
cone integrated from a given diameter to a, with fixed θ = π/4 for different p = 0.3, 0.5 and
0.7 in dashed, dotted and solid lines, respectively. The comparison by simulations are with ,

and lines for p = 0.3, 0.5 and 0.7, respectively.

not even the best grown films have this characteristic (real metal surfaces are rough);

(ii) that the ballistic and ohmic resistances, which are practically additive for specular
scattering, are strongly non-additive for non-specular scattering, therefore it seems
physically unsound and hard to prove or;

(iii) that the geometry of the nanocontacts have θ ≈ π/2, which is also a peculiar condition
and, in fact, the geometry we know in [5] has θ ≈ π/4 with a large ohmic resistance (see
table 1).
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3. The two-dimensional electron gas (2DEG)

As is well known, the first experiments showing conductance quantization were reported on
work performed using a 2DEG by two groups at the same time [37, 38]. In this system,
the experiments, especially the geometry, are well controlled and as many as ten plateaus in
the conductance curve could be observed. In this case, it is likely that the influence of the
leads is less important, not only because the geometry was more than θ ≈ π/2, but also
because the surfaces should be much smoother than those of the metal constrictions. The
geometry in this case is two-dimensional; the variation in resistance for the triangular geometry
ending in a width W , equivalent to the conical geometry discussed here, behaves as log(W ).
More interestingly, the constriction is made by a gate voltage. This is important, because the
scattering of the electrons by the boundaries is not against matter (a hard wall potential), as
in the case of metals, but against the electrostatic potential (having parabolic-like behaviour,
softer than a hard wall), which reduces the scattering strength.

The engineering of the 2DEG devices has come to a good controlled fabrication stage,
and it can be used to clarify the importance of the contribution of roughness to the resistance.
It would be interesting to fabricate a 2DEG with well-controlled constrictions with different
geometries and roughness to compare the different conductances for the different geometries.
This should be feasible, and will be a clear way to discriminate and understand better the
scattering contributions to the resistance. In our opinion, this is probably the only way to
discriminate between diffusive and ballistic contributions, since the condition of ballisticity is
strongly affected by the geometry.
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